Expression of cell-adhesion molecules in embryonic induction. II. Morphogenesis of adult feathers
نویسندگان
چکیده
The developmental appearance of cell-adhesion molecules (CAMs) was mapped during the morphogenesis of the adult chicken feather. Neural CAM (N-CAM), liver CAM (L-CAM), and neuron-glia CAM (Ng-CAM), as well as substrate molecules (laminin and fibronectin), were compared in newborn chicken skin by immunohistochemical means. N-CAM was found to be enriched in the dermal papilla, which was closely apposed to L-CAM-positive papillar ectoderm. The two CAMs were then co-expressed in cells of the collar epithelium. Subsequently generated barb epithelia expressed only L-CAM, but N-CAM reappeared periodically on cells between developing barbs and barbules. N-CAM first appeared on a single L-CAM-positive basilar cell located in each valley flanked by two adjacent barb ridges. Subsequently, the expression of N-CAM extended one cell after another to include the whole basilar layer. N-CAM also appeared in the L-CAM-positive axial-plate epithelia, beginning in a single cell located at the ridge base. The two collectives of N-CAM-positive epithelia constituting the marginal and axial plates then disintegrated, leaving interdigitating spaces between keratinized structures that had previously expressed L-CAM. The morphological transformation from an epithelial cylinder to a three-level branched feather pattern is thus achieved by coupling alternating CAM expression in linked cell collectives with specific differentiation events, such as keratinization. During all of these morphogenetic processes, laminin and fibronectin formed a continuous basement membrane separating pulp from feather epithelia, and were excluded from the sites involved in periodic appearances of N-CAM. The same staining pattern described for developing chickens persisted in the feather follicles of adult chicken tissue that have gone through several cycles of molting. Cyclic expression of the two different CAMs underlies each of the different morphological events that are generated epigenetically during feather morphogenesis.
منابع مشابه
Expression of cell-adhesion molecules in embryonic induction. I. Morphogenesis of nestling feathers
The potential relationship of cell adhesion to embryonic induction during feather formation was examined by immunohistochemical analysis of the spatiotemporal distribution of three cell-adhesion molecules (CAMs), neural CAM (N-CAM), liver CAM (L-CAM), and neuron-glia CAM (Ng-CAM), and of substrate molecules (laminin and fibronectin) in embryonic chicken skin. The N-CAM found at sites of embryon...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملEnhanced expression of neural cell adhesion molecules and tenascin (cytotactin) during wound healing.
Both neural cell adhesion molecules (N-CAM) and tenascin (cytotactin) are important in embryonic morphogenesis but their expression is reduced greatly in adults. This study examined whether they are induced during wound healing. The spatial and temporal expression patterns of these two and other adhesion molecules in the healing of skin, cartilage, and tendon were compared. Neural cell adhesion...
متن کاملAdhesion molecules in skin development: morphogenesis of feather and hair.
Figure 9 summarizes the morphogenetic process of feather and hair. Hair of feathers are formed from a layer of homogeneously distributed mesenchymal cells. The mesenchymal cells start to condense to form foci in response to some unidentified induction signal (Fig. 9B). Several adhesion molecules, including L-CAM, N-CAM, integrin, tenascin, as well as proteoglycan, are involved. These adhesion m...
متن کاملCell adhesion and morphogenesis: the regulator hypothesis.
A sequence for the genetic and molecular regulation of morphogenesis is proposed in terms of the regulator hypothesis which is intended to provide a specific molecular framework relating developmental genetics to evolution. The hypothesis derives from an analysis of the interactive morphogenetic roles of the primary processes of cell adhesion, cell movement, and embryonic induction during regul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 101 شماره
صفحات -
تاریخ انتشار 1985